INTELSAT VI and the COMSAT Technical Review—Jack Fisher

Comsat was created by the Communications Satellite Act of 1962 and led an interesting and tortuous life until 2000 when it merged with Lockheed Martin Global Telecommunications (LMGT).  LMGT shut down operations in December 2001. COMSAT’s story is well told in David J. Whalen’s book “The Rise and Fall of COMSAT” published in 2014.

From 1971 through 1992 COMSAT published semiannually a technical journal that contains a number of articles concerning various Hughes satellites.  These journals are available online and can be accessed at  From 1990 to 1992 COMSAT devoted five journals to a description of the Hughes INTELSAT VI satellite and it operations.  These are summarized below and can be found at the link indicated above.

COMSAT TECHNICAL REVIEW Volume 20 Number 2 Fall 1990

INTELSAT VI:  The Communications System (This issue is particularly interesting as it describes the INTELSAT procurement process and the evaluation of the Hughes and Lockheed INTELSAT VI proposals.


INTELSAT VI Spacecraft Bus Design

COMSAT TECHNICAL REVIEW Volume 21 Number 2, Fall 1991

INTELSAT VI: From Spacecraft to Satellite Operation

COMSAT TECHNICAL REVIEW Volume 22 Number 1, Spring 1992

INTELSAT VI: System and Applications

INTELSAT 603 Reboost

COMSAT TECHNICAL REVIEW Volume 22 Number 2, Fall 1992



Improved Syncom C Set for May Launch—Hughes News April 10, 1964

Syncom C, an improved version of Syncom 2 that has performed so spectactularly since last July 26, will be shipped from the El Segudno plant next week to the John F. Kennedy Space Center in preparation for launching into a synchronous orbit early in May.

Syncom C has been undergoing extensive tests for several weeks and at presstime all systems aboard the tine spacecraft were “go.”

Leaning heavily on experience gained from the success of the Syncom 2 spacecraft, personnel in Space Systems Division have incorporated several improvements into Syncom C, which will become Syncom 3 the moment it lifts off the pad at Cape Kennedy in May.

Probably the most significant improvement will be in the solar cells which help provide power for the spacecraft’s systems. On Syncom 2 the soar cells were the P on N type with a 6 mill glass cover, providing minimal protection against radiation.

In Syncom C, N on P type solar cells with a 12-mil fused silica quartz cover will be used, providing 10 times the resistance to radiation.

“This will assure in excess of three years of oribital operation before any restriction will be placed on full 24-hour day use of the satellite’s communication systems,” said R. M. “Dick Bentley, Syncom manager, Communications Satellite Laboratory.

The major threat to the solar cells , Mr. Bentley said is the Van Allen radiation belt, which extends on past the 22,300 mile orbit on the synchronous Syncoms. Solar cells on Syncom 2, for example have shown 24 per cent degradation from radiation. It now appears that it will continue to operate effectively until March 1965, though becoming somewhat marginal after September 1964.

A second major improvement involving solar cells in the new fabrication technique which provides a better solar panel structurally from the adhesive standpoint. Preston DuPont of Space Systems developed the technique, which with the support of Components and Materials Lab, which saved 1 pound of weight on the spacecraft, a significant reduction.

With Mr. DuPont’s technique all solar cells are applied to the panel simultaneously through a vacuum differential method, with only a thin layer of epoxy provided the adhesive. The technique has proved extremely successful in ground tests in the Space Environmental Laboratory, with no structural defects or loss of cells due to failure in the bonding.

Syncom is the first spacecraft in history to make use of a hydrogen peroxide control system for a period longer than two weeks.  Syncom 2 uses a combination of hydrogen and nitrogen systems and both have operated effectively, but the dual hydrogen peroxide in the Syncom C system will give increased satellite control capability.

Hydrogen peroxide, with a higher specific impulse, gives more energy per pound of fuel, resulting in 600 feet per second of control capability in the continual pulse mode of Syncom C. The nitrogen-hydrogen combination systems on Syncom 2 gave 350 feet per second capability.

“We’re completely confident, from our experience with the hydrogen peroxide system on Syncom 2, which has performed all types of space maneuvering, that we have a perfectly clean system not subject to corrosion associated with hydrogen peroxide and its containers,” Mr. Bentley said. “Though even a speck of contamination can adversely effect a hydrogen peroxide system, we feel that our procedures are adequate so that no corrosion will exist.”

The other major improvement to Syncom C involves changing one of the transponders from two 500 kc channels for two-way voice communication to dual mode capability.  By command from the ground, the transponder bandwidth can be switched from 10 megacycles for transmitting television to 50 kc for optimum relaying of messages from small terminals.

Syncom C, built in 1962, served as the backup spacecraft for the earlier Syncom launches and has been under the direction of Spacecraft Engineer Bill Penprase from the start of assembly.

“Bill has virtually lived with this spacecraft for two years being totally in charge,” Mr. Bentley said. “He deserves a great deal of credit for getting Syncom C rebuilt, including a new wiring harness, and supervising all the subsequent tests to keep us right on the launch schedule established by NASA.”

Mr. Penprase will continue his vigil over Syncom C right up until it is launched, being one of the last men on the pad before it is boosted into its orbit.

HAC Gets $31 Million Canada Satellite Pact—Hughes News October 2, 1970

For Domestic System

A $31 million contract between TELESAT, Canada and Hughes Aircraft Company was signed Wednesday morning in Ottawa. The System will be one of the first if not the world’s first domestic satellite communications system using satellites in synchronous orbit.

Under the terms of the contract, HAC will supply three spacecraft to implement the space component of TELESAT’s domestic satellite communications system.

First delivery is scheduled for October 1972, with the second and third to be delivered at four-month intervals. Present plans call for launching the first in late 1972 from Cape Kennedy, using a thrust-augmented Thor Delta as the launch vehicle. The start of the commercial operations is planned for early 1973.

Included in the agreement are provisions for performance incentive payments over the full life expectancy of the spacecraft and penalty clauses for late delivery.

Full scale commercial operations are slated to begin with the orbiting of the second satellite by mid-1973. An earth station network, initially of 30 to 40 stations, will range from the main heavy route stations near Victoria, B.C., and Toronto, Ont., to the much smaller stations for communities in Canada’s far north.

Allen Puckett, executive vice president and assistant general manager, signed the contract for Hughes Aircraft, while TELESAT’s President D. A. Golden and Jean Claude Delorme, vice president fo Administration and general counsel, signed for TELESAT.

With Dr. Puckett were HAC’s Albert D. Wheelon, vice president and Group executive of Space and Communications Group; Paul Visher, assistant Group executive; Harold A. Rosen, Satellite Systems Laboratory manager; and Lloyd Harrison, program manager for the Canadian satellites.

With TELESAT officials were representatives of the Northern Electric Company, Ltd., of Montreal, Quebec, and SPAR Aerospace Products, Ltd., of Malton, Ont. Agreements with these two major subcontractors were executed prior to the contract signing between TELESAT and Hughes.

Northern Electric will provide the complete electronics system and SPAR will provide the spacecraft structures and engineering support services.

HAC Bidding to Build U.S. Domestic Satellite System—Hughes News January 15, 1971

Primarily for Cable TV

The Federal Communications Commission is considering a Hughes Aircraft application for a nationwide domestic satellite system primarily for cable television operations.

As planned by the Space and Communications Group the system would have two 12-channel synchronous satellites above the equator, a large ground transmitting station at each end of the country, and from 100 to 500 small receiving stations. Cost would be between $50 million and $80 million.

Channels Leased

General Telephone already has leased eight channels on one satellite for seven years at $50 million. The channels would provide 10,000 telephone circuits. The firm plans a $27 million independent system, which could be operating two years after FCC approval of the Hughes proposal.

The drum-shaped satellites, 6 feet in diameter and weighing 1120 pounds, would have an estimated seven-year operational life in orbits 22,300 miles above the equator. The 5-foot diameter parabolic antennas would be trained on the 60-foot transmission antennas of the earth stations below. The earth stations would beam up television programs which the satellites would transmit to local stations, using 30 or 40-foot receiving antennas scattered over the U.S.

Third of Year

General Telephone would use its channels to relay facsimile, high speed data signals and TV signals in addition to telephone messages. Its earth stations would be at Triunfo Pass north of Los Angeles, in Florida, Indiana, and Pennsylvania.

The Hughes-General Telephone proposal is the third of its type filed this year with the FCC. Others have been filed by Western Union Corporation and the American Telephone and Telegraph acting jointly with Comsat Corporation.

Westar makes headlines—Hughes News November 3, 1978

….and the rest of the paper too

Newspaper transmissions through communications satellites is now an everyday transfer for the Wall Street Journal which uses the Hughes

Owned by Western Union the Westar domestic satellite system has two spacecraft in synchronous orbit 22,300 miles above the equator and a third satellite is being held by Western Union as a launch-ready spare.

The daily process begins at the Journal’s Palo Alto plant where the stories are written, the type is set, and the page layouts are created.

Next, the page is “read” by an optical scanner using high intensity light and converted into electronic impulses.

The impulses are beamed into space to a Westar satellite at the rate of 300,000 bits of information per second.

This is done to send the Journal to regional printing plants in Seattle, Riverside, and Denver, where editions are printed and distributed to subscribers in the Northwest, southern California, and Rocky Mountain areas, respectively.

The signals are received by giant, dish-shaped antennas 33 feet in diameter and, with the use of lasers and photo film, the signals and translated back into the original images of Journal pages.

It takes less than 10 minutes to then convert the page from film into metal for use on the printing press. It takes 3-1/2 minutes for each page to be sent and received.

The Journal’s first experience with satellite transmission was in the fall of 1973 when a facsimile of a Journal page was transmitted to an Intelsat IV, also a Hughes built satellite, above the Atlantic Ocean.

The return signal was captured on an adjacent receiver with the transmitted page reproduced in 6 minutes, 12 seconds.

SCG signs $54 million Anik pact—Hughes News April 21, 1978

To keep pace with Canadian communications demands in the 1980s, Telesat Canada has contracted with Space and Communications Group to build three new satellites under a $53.6 million agreement.

The three satellites will comprise the Anik C series. Anik is an Eskimo word meaning brother.

Once they are operational, the three spacecraft will handle a major portion of the countries long distance communication traffic within 1000 miles of the U.S border where most of Canada’s 23 million citizens live.

The first Anik C is scheduled for a 1981 launch from NASA’s space shuttle.

Once Anik becomes operational, it will be one of the world’s first satellites to provide telecommunications services in the super high frequency range of 12-14 billion cycles per second.

Use of these frequencies permits the antenna to remain about the size of antenna used on previous Anik satellites, yet to be capable of producing narrow beams necessary for the high-radiated power.

Because of these capabilities, Anik C will be able to use compact earth stations located in the middle of urban areas without causing interference to terrestrial systems using lower frequencies. The earth terminals will be small enough to be mounted on the roofs or in the parking lots of user offices.

Anik C features 18 communication channels supplying audio, video, and data communication services.

The use of polarization diversity on Anik C allows for a 100 percent increase in communications capacity over the first Anik, launched in1972.  Anik C will use a solar panel that will generate nearly three times the power of the first satellites

The new Aniks will join the HAC-built Anik A spacecraft satellite system. That system which became operational in early 1973, was the world’s first national commercial telecommunications network.

Anik satellites are operated by Telesat Canada, a firm owned jointly by the Canadian government and 13 Canadian telecommunications carriers.


The following material, text and photographs, was received in an e-mail from the Smithsonian on March 20, 2017 and is reprinted here with permission of the NASM.



Hello! How Have You Been Doing Up Here on the Moon?

On April 17, 1967, the Surveyor 3 spacecraft was launched toward the Moon. It was one of five Surveyor landers that touched down on the Moon. The Surveyor program confirmed that the lunar surface could support a spacecraft and that astronauts would be able to walk on the Moon. In 1969, during the Apollo 12 mission, astronauts Charles Conrad Jr. and Alan Bean landed near enough to Surveyor 3 to visit it and remove its television camera, surface sampler, and some tubing, which they brought back to Earth for analysis.

          The artifact in the collection is an engineering model, S-10, used for thermal control tests. It was reconfigured to represent a flight model of Surveyor 3 or later, since it was the first to have a scoop and claw surface sampler. After receipt in 1968 it was displayed in Smithsonian’s Arts & Industries Building and then was moved to its present location in Gallery 112, Lunar Exploration Vehicles, in 1976.

The Surveyor series was designed to carry out soft landings on the Moon and provide data about its surface and possible atmosphere. These were the firs U. S. probes to soft-land on the moon. Once landed they provided detailed pictures of the surface by means of a TV camera carried on each of the spacecraft. Later Surveyors carried the instrumented soil mechanics surface scoop seen on the artifact. These were used to study the mechanical properties of the lunar soil. Some of the spacecraft were also equipped to perform simple chemical analyses on lunar soil by means of alpha particle scattering. There were seven Surveyor launches starting in May, 1966, all launched by the Atlas Centaur rocket. All but two successfully achieved program goals returning over 88,000 high resolution photographs and invaluable detailed data on the nature and strength of the lunar surface.

Surveyor (1966-1968)

The Surveyor probes were the first U. S. spacecraft to land safely on the moon. The main objectives of the Surveyors were to obtain close-up images of the lunar surface and to determine if the terrain was safe for manned landings. Each Surveyor was equipped wotj a television camera. In addition, Surveyors 3 and 7 each carried a soil mechanics surface sampler scoop which dug trenches and was used for soil mechanics tests and Surveyors 5, 6, and 7 had magnets attached to the footpads and an alpha scattering instrument for chemical analysis of the lunar material. The following Surveyor missions took place.

Surveyor 1

Launched 30 May 1966

Landed 02 June 1966, 06:17:37 UT

Latitude 2.45 S, Longitude 316.79 E – Flamsteed P

Surveyor 2

Launched 20 September 1966

Crashed on Moon 22 September 1966

Vernier engine failed to ignite-southeast of Copernicus

Surveyor 3

Launched 17 April 1967

Landed 20 April 1967, 00:04:53 UT

Latitude 2.94 S, Longitude 336.66 E – Oceanus Procellarum

Surveyor 4

Launched 14 July 1967

Radio contact lost 17 July 1967

2.5 minutes from touchdown – Sinus Medii

Surveyor 5

Launched 08 September 1967

Landed 11 September 1967, 00:46:44 UT

Latitude 1.41 N, Longitude 23.18 E – Mare Tranquillitatus

Surveyor 6

Launched 07 November 1967

Landed 10 November 1968, 01:01:06 UT

Latitude 0.46 N, Longitude 358.63 E – Sinus Medii

Surveyor 7

Launched 07 January 1968

Landed 10 January 1968, 01:05:36 UT

Latitude 41.01 S, Longitude 348.59 E – Tycho North Rim





The HS376 Program–Dick Brandes

The HS-376 satellite was conceived on a street corner, but it didn’t become a waif. Indeed, it matured to become the most successful product lines to that point in the Space Group’s history.

In the late 1970’s (most likely 1977), two competitive procurements were scheduled in the near term. Canada’s Telesat company planned a K-Band comsat, ANIK-2. The newly formed Satellite Business Systems (SBS), a joint venture of Comsat Corp. and IBM, was planning its initial satellite purchase, also operating at K-Band. The power requirements of these satellites far exceeded what was available on the HS-333 configuration, the first Hughes product line design.

Under the leadership of Harold Rosen, a new design exploiting the large bay of the soon-to-launch Space Shuttle was being developed. This was a spin-stabilized configuration with a large circular solar panel sized to match the Shuttle bay diameter. The design was elegant in its simplicity, exploiting all the proven technology of Hughes’s many spinners, was simply deployed from the Shuttle by “rolling” it out, and was very cost-effective as a satellite and in its Shuttle occupancy, which determined launch cost. The large solar panel provided adequate power for all the relay type comsats we could foresee. Indeed, Marty Votaw , the chief engineer at Comsat Corp., declared that the Hughes design would sweep the competition for future comsats. (This configuration was ultimately used in the Leasesat Program).

As part of our pre-proposal activity. we set up a meeting with SBS management to describe and extol the merits of our design for their mission. Harold and I went to their headquarters in Washington D.C. and were pleased to see all their senior staff in attendance, including, notably their CEO. Harold gave the presentation in his usual low key, sincere, and persuasive manner.

After he finished, and the technical staff had their questions answered, the CEO gave us his view and it wasn’t at all ambiguous. He said we had developed a very clever, cost-effective design, but it wouldn’t work for SBS. Planning a system roll-out based on the Shuttle was too risky. While the Shuttle schedule fit SBS’s timeline, there was every reason to believe that NASA was being optimistic, and the schedule could slip beyond SBS’s need date. He then quoted a very large cost to SBS, in the millions , for every month of delay. We thanked him for his candor, and left the meeting feeling very chagrined.

So there we were, on a corner of K-Street, wondering out loud how to proceed in the competition. Harold was very impressed with the CEO’s estimate of delay cost. He saw no virtue in trying to change his mind about the Shuttle schedule. We had to figure a way to get more power on a satellite configured to fit on a Delta booster. Then, in a flash, he suggested constructing a second cylindrical solar panel around the basic panel, and deploying it downward once in orbit. I quickly saw that this was a superior approach to generating greater power than other schemes we had considered. (Assuming we didn’t want to jump to a 3-axis configuration). We agreed to immediately invest in an IR&D effort to demonstrate the deployment feasibility. That was accomplished well in time for the upcoming proposals. (Our return to SBS to brief the new configuration was met with nods of approval).

So we had a solid Delta based design which could also be launched from the Shuttle using the McDonnell Douglas Payload Assist Module (PAM). It was given the model number HS-376. But we still had to develop a strategy to win the competitions which would be strongly contested by others, notably RCA.

We looked at the future market for the HS-376 and saw a large number of potential sales. We figured to be non-competitive if we tried to recover the non-recurring costs in any one program. So an approach was taken to divide the non-recurring cost over three procurements, ANIK-C, SBS, and a TBD from a grab bag of future possibilities.

Selling this risky approach (what happens if we won only one of the competitions?) turned out to be not too difficult Alan Puckett was somewhat a riverboat gambler.

Our gamble paid off. We won both awards within weeks of each other. We ran the programs out of a joint program office to maximize efficiency. Alas, as in many other cases, we underestimated the nonrecurring costs significantly. The nut we had to recover in the future grew by tens of millions of dollars. And, of course, there was a lot of red ink on the table which Puckett was hardly pleased with.

But the HS-376 turned out to be a technical success pleasing our customers. We had to make it a commercial success. And we did. We almost ran the table on future procurements, winning programs for AT&T, Western Union, Canada’s ANIK-D, Galaxy, Mexico, Indonesia, and Brazil among others. In a few years we had delivered a return on investment (ROI) in excess 30%. So the idea born on a Washington street corner lived a good life.









Mars Observer—Jack Fisher

Mars Observer as originally planned was to be a low cost Mars orbiter and a successor to Viking. Preliminary mission goals expected the mission to provide planetary magnetic field data, detection of certain spectral line signatures of minerals on the surface, images of the surface at 1 meter/pixel and global elevation data. The February 1984 NASA budget included funding and the release of the JPL RFP was scheduled to for June. The spacecraft was to be launched with the Space Shuttle in 1990. There, however was a significant disagreement between NASA headquarters and JPL. JPL wanted the boost from earth orbital velocity to Mars transfer velocity to be integral with the spacecraft while NASA headquarters wanted a separate stage that could be used with other missions. The final compromise was an RFP that included three potential options: 1. spacecraft only; 2) separate transfer orbit stage and 3) spacecraft with integral propulsion. JPL would be responsible for 1 and 3 while NASA Marshall Space Flight Center would handle Option 2. Working out this compromise delayed the RFP to June 1985.

Hughes saw this as an opportunity to get back into the NASA world of planetary exploration based upon experience building and flying communication satellites with integral propulsion. A proposal team was formed headed by Leo Nolte and Jack Fisher. The Hughes proposal was based upon a modification of Intelsat VI with a despun science platform with and without integral propulsion for Options 1 and 3.

The Mars Observer proposals were submitted in August 1985. Hughes, RCA and Ford Aerospace bid on Options 1 and 3 while Orbital Sciences was the only bidder for Option 2. The proposals were evaluated and best and final offers were submitted in December. After JPL evaluation of the proposals an amendment to the RFP was issued in February 1986 limiting source selection to Options 1 and 2 eliminating work package 3. Shortly thereafter Hughes submitted a protest that was denied.

On March 24, JPL announced that RCA submitted the successful spacecraft proposal for Option No. 1. The spacecraft design was based upon the RCA Satcom, TIROS and DMSP satellites. Note: within a year RCA was purchased by General Electric Astrospace who completed design and construction of the Mars Observer. OSC was the successful bidder for option 2.

          Mars Observer was originally planned to be launched in 1990 by the Space Shuttle. In March 1987, the mission was rescheduled for launch in 1992 with a Titan III due to the loss of Challenger and spacecraft weight increases. Along with the launch delay, budget overruns necessitated the elimination of two instruments to meet the 1992 planned launch.

         Mars Observer was launched on September 25, 1992 aboard a Titan III launch vehicle and a Transfer Orbit Stage that placed the spacecraft into an 11-month, Mars transfer trajectory. Mars Observer was scheduled to perform an orbit insertion maneuver on August 24, 1993. However, contact with the spacecraft was lost on August 21, 1993. Likely reason for spacecraft failure was the leakage of fuel and oxidizer vapors through the improperly designed check valve to the common pressurization system. During interplanetary cruise, the vapor mix had accumulated in feed lines and pressurant lines, resulting in explosion and their rupture after the engine was restarted for routine course correction. The total cost for the mission was estimated to be $813M.

Comment by Steve Dorfman

The Mars Observer was NASA at it’s worst. They believed the TOS stage would a fitting complement to the Shuttle launching communication satellites. Orbital Science was created based on that premise and a successful IPO was launched promising a series of communication satellite launches on shuttle. Unfortunately all the communication satellites contemplated at that time (RCA and Hughes) intended to use integral propulsion, a much more efficient way to transition from the Shuttle to transfer orbit. By eliminating that possibility for Mars NASA clung to the TOS solution for Shuttle transfer orbit to preserve the concept.

The TOS launch of the Mars Observer was the only TOS launched. It was never used for commercial satellites as originally advertised. To its credit Orbital Science did a “pivot” from this flawed strategy and has become a successful Space company building satellites and launch vehicles. But it started from a false premise supported by a misguided NASA.

It is ironic that the mission was also a failure in adapting commercial satellite technology for planetary exploration though Pioneer Venus proved it could be done if done carefully.


3. NASA Systems Division Campaigns, 1975-1979—Will Turk

3.1 Introduction

The NASA Systems Division business center had a broad set of objectives and opportunities in early 1975. The Division’s success in again becoming part of NASA’s exploration programs opened new horizons and opportunities for the Group. Steve Dorfman became the Pioneer Venus campaign manager in 1972 and ultimately the Program Manager for the Pioneer Venus Program in 1974.   As a result Harvey Palmer, NASA Division Manager, was looking for help to extend the earlier successes in the Planetary Sciences, Earth Resources and Weather Observation sensors and systems. At that time S&CG was already under contract to deploy the Japanese Meteorological Satellite (GMS), a program led by Steve Petrucci. Steve’s thrust was to parlay our GMS experience into the future opportunities at the National Oceanic and Atmospheric Administration (NOAA), then planning for the USA’s first operational Geosynchronous Orbit Environmental Satellite (GOES).

Harvey got his wish fulfilled.   Dr. Wheelon made two additions to the NASA Systems Division in early 1975. Will Turk was brought in to manage the Advanced Programs and several months later Dick Jones was made Harvey’s deputy.   Jacque Johnson and Hap LaReux were responsible for Division Marketing and Contracts respectively. The new business management team took on the task of expanding the NASA Division’s business over the next 5 years to new heights with many successes. Dick took the Division helm after Harvey’s retirement in 1979

The material that follows is my recollection of the major thrusts that were undertaken to evolve and expand our businesses over a very active 5-year period.   I have chosen to describe the campaigns in a more or less sequential time manner and will let those involved in the actual developments provide the details of their specific programs separately. The NASA Division team all made major contributions towards evolving our satellite, spacecraft, probe and sensor businesses.

3.2 Business Objectives

The Earth Observation and Planetary Exploration customers within the NASA included several key organizations: Goddard Space Flight Center (GSFC), Ames Research Center (ARC), and Jet Propulsion Lab (JPL). During this period we extended our NASA customer base to include communications projects at the Lewis Research Center (LeRC) and the Marshall Space Flight Center (MSFC).

In the Meteorological Satellite arena the customers included the NOAA, DoD, and NEC of Japan.   It was our objective to re-kindle our relationships with NASA in the area of communications technology as well as subsystem development. From a business point of view, we chose to follow the near term STS Shuttle Ku Band communications needs and to develop advanced communications opportunities with LeRC. Finally, we made it our business to continue to provide excellence in space sensors, a variety of earth orbiting satellites as well as planetary probes and spacecraft.

Having developed the first prototype Multi-Spectral Sensor (MSS) in 1970 for the GSFC’s Landsat, (earlier called the Earth Resources Technology Program), we had a great deal of understanding and experience with respect to measuring the spectral characteristics of the Earth. The images collected from the three instruments on Landsat were used in agriculture, cartography, forestry and geology.   The first Landsat was launched with the Santa Barbara Research Center (SBRC) MSS 1 in July 1972. The follow-on MSS-2 and 3 were placed under the joint management of the S&CG/SBRC. A sole source follow-on was expected in 1976. The GSFC had been developing the technology and specifications for a much improved sensor, the Thematic Mapper [TM]. With the maturity of the MSS Program, NASA was preparing the RFP for the Landsat earth observation system which would include the TM and MSS-D. Targeting this procurement was a natural path for the Hughes S&CG and SBRC team. It was a larger step for us to make the decision to compete for the Landsat Spacecraft, the vehicle that would house the TM.

This Landsat technology was different from current Hughes spin-stabilized spacecraft technology in that it took us into a class of low-altitude body-stabilized satellites that were better suited for Earth observation missions. GSFC was planning to introduce the Multi-Mission Modular Spacecraft (MMS) that fundamentally incorporated pre-designed spacecraft subsystems modules and a mission-peculiar structure to support the specific scientific missions payloads and communications package. Their objective was to use this bus for a whole array of planned low-altitude scientific satellite missions. The Technology Division was considering bidding on the Attitude Control Module for the independently procured MMS.

The NOAA had spent years developing the low altitude TIROS/Nimbus weather satellites while the Defense Meteorological Satellite Program (DMSP ) served the DOD customer.   S&CG was about to launch the first Japanese Geostationary Meteorological Satellite (GMS ) and a sole source follow on was expected in mid 1977. The major opportunity on the horizon was the competition for the follow-on to the NOAA’s Synchronous Meterological Satellite (SMS) , the Geostationary Operational Environmental Satellite system (GOES).   This was also a natural follow on to the GMS activity and we were prepared to compete for this very important part of the weather observation business. The Visual Infra-red Spinning Sensor Radiometer VISSR was to be procured separately from SBRC and integrated into the GOES spacecraft.   In parallel we continued our advanced efforts to internally explore alternative means of collecting weather data using microwave radiometry. That instrument was key to the upcoming GSFC Stormsat mission studies which we believed could lead to expanding our foothold into systems that provided for improved weather forecasting.   To that end we also made a significant effort to bid for the advanced microwave radiometer procurement planned for the DMSP.

Having recently been awarded the Pioneer Venus Orbiter and Multiprobe, we planned to expand our business by being a major supplier to NASA for planetary missions.   We had made attempts to participate in the Voyager and Viking activities but hadn’t had a major success until the award for the Pioneer Venus.   The next program on the horizon was the Galileo Jupiter Orbiter/Probe, We put a major emphasis on being part of that effort by supporting Ames and JPL during the preliminary definition phase of the mission with a variety of viable spacecraft and probe designs.

Finally, not since the Syncom/ATS Programs had we conducted advanced communications studies or programs with NASA. With the development of the Space Shuttle, the opportunity to provide the Space Shuttle communications relay link to the TDRSS network unfolded. The Ku-Band Comm/Radar procurement was being planned for 1978. We teamed with the Hughes Radar Systems Group to develop and compete for this important subsystem that was part of the Space Shuttle Program under development at Rockwell International.

Along the way we saw several new NASA/NOAA opportunities in which we chose to participate in. Many of them won’t be recognized because of their size or little notoriety, others never made it into the governments budget for development. A list of Campaigns and lead engineers follows: For example, we looked at the Venus Orbiter Imaging Radar (VOIR)-Andy Parks, Out of the Ecliptic Observatory, the Solar Polar Mission-Uldis Lapins, Halley Comet Flyby, Ion Drive Interplanetary Spacecraft-Jerry Molitor, Solar Sail, Tethered Satellites-Tony Lauletta, Lunar Polar Orbiter, Mars Polar Orbiter/Penetrator, Seasat B, StereoSat , the Spinning Solid Upper Stage (SSUS)-Len Bronstein, MLA Sensor-Ed Harney and a Laser Communication Study. Outside of NASA we tracked the FAA’s Aerosat, and created several Syncom 4 applications.

3.3 Execution

The Division under Harvey Palmer through his unique style of leadership did an astounding job. In addition to those already mentioned, Jacques Johnson as head of marketing was always on top of the competition. We prepared many leading edge technology developments and studies. Our ability to meet with the right people when we were in the need of information or when we wanted to disseminate results to our customers or the scientific community was made available to us. With the base programs of GMS, MSS, and PV in hand we laid out a winning strategy for the future. The key areas we focused on were:

Technology Development

  • Ku Band Subsystem-1975
  • Thematic Mapper-1975
  • Jupiter Probe-1975
  • Microwave Radiometer Test Bed-1976-1978

Pre-Proposal Planning

  • Ku Band Subsystem-1975-1976
  • GOES DEF-1976
  • Thematic Mapper-1976-1977
  • Galileo Jupiter Orbiter/Probe-1976-1977
  • Landsat D-1976
  • 18/30 Ghz Advanced Communications Study-1978
  • DMSP Blk5D Microwave Radiometer Subsystem-1978


  • GOES DEF Proposal-1976
  • Ku Band Proposal1976
  • Thematic Mapper Proposal-1977
  • Landsat D Proposal-1976
  • 18/30 Ghz Advanced Communications Study Proposal-1978
  • Galileo Jupiter Probe Proposal-1978
  • DMSP Special Sensor Microwave Imager (SSMI) Proposal-1979

We won 6 of the 7 competitions that we entered over the 5-year period.

3.3.1 GOES Geostationary Operational Environmental Satellite

          Hughes had made a significant business commitment to participate in a major way in the NOAA meteorology programs. The early ATS experiments and the pre-planning with the Synchronous Meteorological System (SMS) in the late 60’s along with the award to SBRC of the advanced geo-synchronous altitude sensor placed us in an enviable position. Steve Dorfman and Pat Dougherty made key contributions to the early planning. We were awarded the GMS program in 1973. Preparation to compete for the upcoming GOES was well underway having launched the Japanese GMS in mid-1977. Japan had been the first country to launch an operational high altitude weather satellite.   Steve Petrucci and Louis Fermelia led the program development. The primary payload for GMS and GOES was the VISSR developed by SBRC.

The GOES DEF was planned to be launched by the larger Thor Delta 3914 and would be built around an advanced version of the instrument that would include atmospheric sounding—the VAS or VISSR Atmospheric Sounder. Steve Petrucci’s team from GMS were in place and had been interfacing with the NOAA Program Office and were well prepared to compete for and win the three satellite procurement in 1977. Louis Fermelia’s systems engineering group had conducted design work prior to and during the proposal to meet the specific NOAA requirements. Our proposal team took up quarters on the 11th floor of Bldg 391 with the Advanced Programs acting as Steve Petrucci’s book bosses to develop the Technical Proposal. The team included Dana Salisbury, Tom Shoebotham, Jerry Lewis, Jason Endo, Dr. Chuck Rubin, Hugh Witt, Peter Fono, Tom Eakins, John McIntire, Bill Turner and John Smay. Marilyn Gatto of Publications was personally responsible to Harvey and was involved in seeing that this important proposal met its deadline.

Success came in 1977 when we were awarded the GOES D/E/F Program.

 3.3.2 Thematic Mapper (For Landsat 4-6)

         NASA GSFC had been preparing the design specifications for the Thematic Mapper for many years. This instrument was to provide a greater number of bands than the MSS and provide an even greater precision for the imagery. The Thematic Mapper (TM) is an advanced, multi-spectral scanning, Earth resources sensor designed to achieve higher image resolution, sharper spectral separation, improved geometric fidelity and greater radiometric accuracy and resolution than the MSS sensor. TM data are sensed in seven spectral bands simultaneously. Band 6 senses thermal (heat) infrared radiation. Landsat can only acquire night scenes in band 6. A TM scene has an Instantaneous Field Of View (IFOV) of 30 square meters in bands 1-5 and 7 while band 6 has an IFOV of 120 square meters on the ground. The TM radiometric resolution is 0-255 or 256 discrete numerical levels. The MSS instruments on both Landsat 4 and 5 also have radiometric resolutions of 0-255. S&CG was the lead organization for Hughes and the SBRC team provided the experience of the MSS and their advanced technologies to create a superior scanner. The specifications were still evolving for the instrument that was to fly on Landsat 4 and 5 around 1982.

Ed Harney was designated as the proposal manager in 1976. During the pre proposal, Ed knew well that there were issues associated with our current MSS program management and technology that would have to be overcome. However he left the details to others to sort out….his focus was on delivering a first class Thematic Mapper proposal and he did just that. With all of the preparation that went into the pre- proposal, we were quite ready to give the NASA GSFC a first class proposal and we did.

The award for development of the Thematic Mapper was made in 1978 with Roy Blanchard assigned as the initial program manager followed by Dick Jones.

 3.3.3 Multispectral Sensor MSS (for Landsat Program)

The radiometry programs at SBRC have all been successful. The MSS was first launched in 1972 and demonstrated the usefulness of measuring   Earth reflectance in 3 bands.   Hughes and particularly Virgnia Norwood were recognized by NASA for efforts in the definition of the 3 spectral band MSS. The program initially was under direction of SBRC while MSS 2 & 3 management responsibilities were transferred to SCG. Several Program Managers Art Gardner, Tony Lauletta and Ed Felkel were responsible for the development Programs. In 1976 a sole source contract was awarded to Hughes to incorporate updgrades to the MSS for the upcoming Landsat D mission.

Over the course of manufacturing and testing the MSS-3 instrument we did have some serious problems that had to be resolved. NASA GSFC’s on-site representative was adamant about the fact that the Hughes team was lax in solving many of the perceived problems…this was particularly so in the 1977/1978 period during the testing of MSS-3.   This could potentially delay the launch of Landsat 3. Recognizing that the difficulties in MSS would impact two major new business procurements, the Thematic Mapper and Landsat, Harvey Palmer made a bold decision. He temporarily closed down the Advanced Programs and assigned the whole team to help resolve the issues within the MSS Program. This was a first. The MSS was then being managed by Ed Felkel with Lee Groner as systems engineer. The apparent problem was that the MSS was in the thermal vacuum chamber and the test results were giving erroneous data relative to the expected measurements.

My assessment team included John Stivers, Ken Brinkman, Virginia Norwood, Yale Weisman from the Technology Division, and included several SBRC and Culver City engineers that were responsible for designing the instrument. We started with discussions with our MSS Program Office to get a thorough review from the team about the test program and the expected results. This was followed with updates from the on-site NASA tech to understand his many concerns. Over the period of 6 weeks the team oversaw the programs offices activities in regards to resolving some very specific issues having to do with sensor image distortions that could not at that moment be associated with the instruments design.

As the review team undertook the assignment, the program office was embarking on building a structure to isolate the MSS test support fixture from apparent noise thought to be generated by vibrations within the test facility or generated outside of the facility. Starting from scratch the Advanced Programs Team poured over the MSS design information and focused on the mirror control system. As an essential part of the instrument, mirror mechanics and electronics appeared to be a candidate for creating what appeared to be imperfect test images. With help from Hughes Culver City engineers supporting SBRC, a comprehensive review finally uncovered some very subtle problems in the control electronics. Design corrections were incorporated in the MSS and the final systems test was concluded six weeks later with total success, however the MSS was delivered late. The problems were isolated and resolved over a period of six difficult weeks. The tests were finalized successfully and the instrument delivered to the Landsat spacecraft contractor, GE, for final integration and systems testing. Landsat 3 was launched in March 1978 and was operational over 5 years although the new thermal band failed early in the mission.

While we vindicated ourselves with the local GSFC representative, we still had some difficulty in convincing the GSFC Program Office of our ability to oversee both the 7-band Thematic Mapper and the Landsat Satellite developments. With commitment of the Hughes management evident, and with the delivery of the MSS and the on-orbit success of the Landsat 3 we believed that the two-bid strategy was still viable.

 3.3.4 Landsat 4-6

The proposal for the Landsat 4-6 took place twelve months after the Thematic Mapper award. Hughes would be providing two key sensors to the Landsat contractor, the MSS-4 and TM. We felt strongly that we could put together an excellent proposal and put a major effort in place under the direction of proposal manager Jerry Farrell. Our understanding of the mission requirements was excellent and we felt that we could offer an exceptional design. Recognizing that the GSFC had completed the design and development of the Multi-Mission Spacecraft (MMS), we would have to show how effectively we could integrate the sensor suite with the MMS and include the deployable solar array and the Ku-Band communication’s tracking antenna and electronics to provide for the uploading of the scientific data to the Tracking Data Relay Satellite System (TDRSS). The Landsat satellite operates in a low altitude sun-synchronous orbit.   The greatest unknown was whether we could convince the GSFC Program Office of our ability to overcome technical issues that were occurring on MMS-3 just prior to the release of the Landsat RFP as noted in the prior discussion. Based on interactions with the customer we believed that we had mitigated all of the government’s concerns.

As things turned out we lost that competition.

3.3.5 Shuttle Ku-Band Communications/Radar Proposal

The Space Shuttle development program was maturing in 1976 and NASA was preparing the specifications for the major communications/ radar system used to transmit critical information back to mission control via the TDRSS and to track objects. The Marshall Space Flight Center was the lead NASA organization for the Shuttle Communications/Radar Program.   Norm Averech, Marketing Manager for the Technology Division and I worked with Lowell Parode from Radar Systems Group during the pre-proposal phase of the Ku-Band campaign. Our first visit to MSFC to meet with their Program Office established an excellent reference point for the future procurement. The ability to apply our direct K-band experience and hardware to meet the Shuttle’s needs were sound and opened the door for Hughes S&CG to be part of the manned space program.

The Ku-band antenna aboard the space shuttle orbiter was to be physically located within the payload bay; the payload bay doors are opened and the Ku-band antenna is deployed. The subsystem operates in the Ku-band portion of the radio frequency spectrum between 15,250 MHz and 17,250 MHz. Once the Ku-band antenna is deployed, the Ku-band system can be used as a communication system to transmit information to and receive information from the ground through the NASA Tracking & Data Relay Satellite System (TDRSS). The Ku-band antenna aboard the orbiter can also be used as a radar system for target tracking objects in space, but could not be used simultaneously for Ku-band communications and radar operations. The orbiter Ku-band system includes a rendezvous radar that skin-tracks satellites or payloads in orbit to facilitate orbiter rendezvous with them. For large payloads that must be carried into orbit one section at a time, the orbiter will rendezvous with the payload segment currently in orbit to add on the next section. The gimbaling of the Ku-band antenna permits it to conduct a radar search for space hardware. The Ku-band system is first given the general location of the space hardware from the orbiter computer; then the antenna makes a spiral scan of the area to pinpoint the target.

         This program was awarded to Hughes in 1978.

3.3.6 Galileo Probe Proposal

There were many customer meetings that Uldis Lapins and I attended to develop an understanding of the planned Galileo Jupiter Orbiter/ Probe scientific mission. Visits to Ames Research Center, the home of the Pioneer-class deep space missions, were made exploring ideas and demonstrating our commitment to be a part of this program. Uldis and his team came up with various spacecraft concepts and used our Pioneer Venus experience to create alternative probe designs. Ames was focused on a Pioneer-class mission with the Pioneer Jupiter Orbiter Probe (PJOP) while JPL was evolving their Mariner class vehicle to create a Mariner Jupiter Orbiter Probe (MJOP).

When the overall NASA management of the future program was directed to JPL in early 1976, we similarly introduced our concepts to their program office. One thing that was very apparent was that JPL’s spacecraft experience was with 3-axis stabilized spacecraft while Ames had built a number of spin-stabilized spacecraft for their missions. We chose to be bold and offer JPL a dual spin concept. The design proposed a spacecraft that incorporated all of the science, communications and bus electronics/ power on one side of spacecraft with the probe located on the opposite end of the spacecraft.   The two sides were joined through a Bearing and Power Transfer Assembly (BAPTA) that Hughes had developed for communications satellites. We took John Velman, Loren Slafer and Lynn Grasshoff to present our expertise.

For a period of time we thought that we had opened up a unique opportunity with JPL. They had a great deal of interest in our concepts, in particular an option that incorporated a Perigee Kick Motor (PKM) stage to launch from the Shuttle. They were especially focused on the intricacies of our spacecraft’s BAPTA.   In follow ups, Jim Cloud, Manager of the Technology Division was even contacted over the possibility of providing a BAPTA to JPL. By the summer of 1976 JPL had made a preliminary choice of a dual spin spacecraft as their baseline. By early 1977 they decided to build the spacecraft in-house. However, the probe would be competitively procured through Ames Research Center for a launch in January 1982.   From that point, Uldis directed the team’s Galileo Probe effort through an ever-changing set of circumstances. .

The Galileo mission evolved as a single orbiter spacecraft that also served as the transport vehicle for the Galileo Probe. Congress approved funding for the Galileo mission in 1977; in September 1978, as the Pioneer Venus spacecraft were heading towards Venus, Hughes was awarded the contract for the Galileo Probe. The mission concept was that the JPL orbiter would release the probe 150 days prior to arrival at Jupiter and receive probe data as it descended into the Jovian atmosphere and relay the data back to Earth. Hughes would design and build the probe as well as the radio relay hardware (RRH) to be mounted on JPL’s orbiter. The spacecraft, orbiter plus probe, was to be launched by the Space Shuttle and the Interim Upper Stage (IUS)(later called the Inertial Upper Stage) in January 1982 arriving at Jupiter in August 1984. This was a very favorable Jupiter opportunity as a Shuttle/IUS could launch the Orbiter/Probe to Jupiter with a single Mars gravity assist.

However, IUS development problems and Galileo weight growth delayed the mission and NASA began to consider separate orbiter and probe missions as the combined mass of the Orbiter and Probe became too great for a single launch for the next Jupiter launch opportunity. Ames Research Center prepared and released an RFP for a probe carrier as a separate spacecraft and mission from JPL’s orbiter. Hughes, along with TRW, developed carrier designs and submitted proposals. Although Hughes was selected as the winner of the competition, NASA soon determined that there was inadequate funding to complete both the Galileo Orbiter and probe carrier/probe missions and this development effort was canceled. The Galileo mission was restructured to accommodate the original plan of the combined Orbiter/Probe vehicle utilizing a Centaur upper stage modified to be compatible with the Shuttle and a launch planned for May 1986.

The loss of the Challenger on January 28, 1986 had two immediate effects on the Galileo mission—a significant delay to allow Shuttle modifications and cancellation of the modified Centaur stage and return to the IUS upper stage. Also the flight-ready probe had to be returned to Hughes and conditioned for a three-year launch delay as well as an increase in Jupiter transit time from two to six years. This required determination of expected life of the probe and resulted in the replacement of some units. This phase of the probe program was ably managed by Bernie Dagarin.

        The revised mission plan resulted in a Galileo launch on October 18, 1989, that propelled the combined Galileo orbiter and probe into the so-called VEEGA trajectory with gravity assist flybys of Venus and Earth (twice) on the way to Jupiter. The Galileo Probe was separated from the Orbiter on July 12, 1995, entered the Jovian atmosphere on December 7, 1995 and returned science data for more than 60 minutes sustaining pressures up to 22 atmospheres.

Although a number of other mission opportunities arose the Galileo probe was the last planetary program awarded to Hughes.

3.3.7 DMSP Special Sensor Microwave Imager/Sounder (SSM/I)

The initial Microwave Radiometer work at S&CG was led by Chuck Edelsohn The initial Microwave Radiometer work at S&CG was led by Chuck Edelsohn and jointly pursued by Manny Siskel and Frank Godwin of the Technology Division. The radiometer operated at 140/183 Ghz and provided atmospheric sounding measurements that were not then available to the meteorological community. Capabilities from geostationary and low altitude orbits were evaluated. There were many customer exchanges at NOAA and DoD demonstrating the technology necessary to deploy such a device on a low altitude satellite. Much of our satellite design work was based on the NASA Multi Mission Modular Spacecraft being planned for Landsat D and other missions at that time. The radiometer required deployment of a large earth pointing antenna aperture necessary to collect sounding measurements at the higher frequencies. The Stormsat mission was evolving in the scientific community as well as the GSFC Program Office.   While we had spent several years testing and designing the Microwave Radiometer for the expected Stormsat Program competition there were many delays on the decision to proceed at NOAA.

Over the same period a new opportunity was unfolding at DOD. The operational Defense Meteorological Satellite Program (DMSP) program had plans to introduce an advanced radiometer into their network of low altitude orbiting satellites. A deployable spinning Microwave Imager/Sounder RFP was in preparation and we shifted our effort to concentrate on preparing briefings and our capabilities to the DOD customer. The frequencies were lower than those used in Stormsat but our experience was directly applicable to this mission. The specifications called for a smaller spinning radiometer. We felt strongly that all of our technology would satisfy the mission specifications defined by the Navy and made a decision to focus a major effort on this procurement. Al Edgerton, who had just joined Hughes and was very familiar with the DMSP radiometer planning, and Manny Siskel led our efforts.

The SSM/I is a seven-channel, four-frequency (19.35Ghz, 22.235 Ghz, 37Ghz/85 Ghz), linearly-polarized, passive microwave radiometer (a total-power instrument configuration) that measures atmospheric, ocean, and terrain microwave brightness temperatures and are converted into environmental parameters such as sea surface winds, rain rates, cloud water, precipitation, soil moisture, ice edge, and ice age. SMM/I data is used to obtain synoptic maps of critical atmospheric, oceanographic and selected land parameters on a global scale. The archive data consists of antenna temperatures recorded across a 1400 km swath (conical scan), satellite ephemeris, Earth surface positions for each pixel and instrument calibration. The electromagnetic radiation is polarized by the ambient electric field, scattered by the atmosphere and the Earth’s surface, and scattered and absorbed by atmospheric water vapor, oxygen, liquid water and ice.

In 1979 S&CG was awarded a contract for the SSM/I Program.

3.3.8 Advanced 20/30 GHZ Communications Technology Study

Lewis Reserarch Center had initiated internal activities to develop an Advanced Communications Technology Satellite (ACTS). In the mid-70s they were particularly focusing on operating in the higher frequency bands…namely Ka-band or 20/30 Ghz and were preparing to contract for studies to support their internal efforts. Dick Jones and I traveled to Cleveland for our first exchange in mid-1977. Our purpose was to extend S&CG’s base of leading edge communications technologies by working with NASA’s development team at LeRC. Over the next year through multiple exchanges we competed for and were awarded one of several contracts to investigate the technology associated with 18/30ghz satellites. Len Bronstein led the Division’s effort.

During the period 1981-83 several spacecraft contractors including Hughes were awarded study contracts for defining an R&D spacecraft configuration. These studies by LeRC led to the definition of Advanced Communications Technology Satellite (ACTS). In March 1983 LeRC released an RFP to industry for ACTS. The only bidder was RCA Astro-Electronics with both Hughes and Ford Aerospace declining to bid. Later that year Hughes filed an application with the FCC for a Ka-band domestic system consisting of two satellites to be launched in 1988. Hughes claimed that ACTS was a duplication of the Air Force’s Milstar technology and that any technology applications should be developed by industry rather than NASA. Although nothing came of this application it set the stage for consistent Reagan administration opposition to the ACTS program despite the favorable disposition of Congress. The original launch date of September 1989 eventually slipped to August 1993 due to funding cutbacks, development problems, and other difficulties.

The ACTS, operated successfully in a geostationary orbit over 11 years and with the greater bandwidth available at Ka-band helped the satellite industry compete with fiber optic cable in the evolving broadband telecom arena.